Standard Specification for
Jet B Wide-Cut Aviation Turbine Fuel¹

This standard is issued under the fixed designation D6615; the number immediately following the designation indicates the year of
original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A
superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

1.1 This specification covers the use of purchasing agencies
in formulating specifications for purchases of aviation turbine
fuel under contract.

1.2 This specification defines one specific type of aviation
turbine fuel for civil use. This fuel has advantages for opera-
tions in very low temperature environments compared with
other fuels described in Specification D1655. This fuel is
intended for use in aircraft that are certified to use such fuel.

NOTE 1—The technical requirements of this product, at the time of the
first publication of this specification, are substantially identical to the
requirements of Jet B in Specification D1655.

2. Referenced Documents

2.1 ASTM Standards:²
D86 Test Method for Distillation of Petroleum Products at
Atmospheric Pressure
D130 Test Method for Corrosiveness to Copper from Petro-
leum Products by Copper Strip Test
D323 Test Method for Vapor Pressure of Petroleum Products
(Reid Method)
D381 Test Method for Gum Content in Fuels by Jet Evapo-
rator
D1094 Test Method for Water Reaction of Aviation Fuels
D1266 Test Method for Sulfur in Petroleum Products (Lamp
Method)
D1298 Test Method for Density, Relative Density (Specific
Gravity), or API Gravity of Crude Petroleum and Liquid
Petroleum Products by Hydrometer Method
D1319 Test Method for Hydrocarbon Types in Liquid Petroleum
Products by Fluorescent Indicator Adsorption
D1322 Test Method for Smoke Point of Kerosine and
Aviation Turbine Fuel
D1655 Specification for Aviation Turbine Fuels
D1660 Method of Test for Thermal Stability of Aviation
Turbine Fuels (Withdrawn 1992)³
D1840 Test Method for Naphthalene Hydrocarbons in Avia-
tion Turbine Fuels by Ultraviolet Spectrophotometry
D2276 Test Method for Particulate Contaminant in Aviation
Fuel by Line Sampling
D2386 Test Method for Freezing Point of Aviation Fuels
D2622 Test Method for Sulfur in Petroleum Products by
Wavelength Dispersive X-ray Fluorescence Spectrometry
D2624 Test Methods for Electrical Conductivity of Aviation
and Distillate Fuels
D3227 Test Method for (Thiol Mercaptan) Sulfur in Gaso-
line, Kerosine, Aviation Turbine, and Distillate Fuels
(Potentiometric Method)
D3240 Test Method for Undissolved Water In Aviation
Turbine Fuels
D3241 Test Method for Thermal Oxidation Stability of
Aviation Turbine Fuels
D3338 Test Method for Estimation of Net Heat of Combustion
of Aviation Fuels
D3948 Test Method for Determining Water Separation Char-
acteristics of Aviation Turbine Fuels by Portable Separom-
er
D4052 Test Method for Density, Relative Density, and API
Gravity of Liquids by Digital Density Meter
D4057 Practice for Manual Sampling of Petroleum and
Petroleum Products
D4171 Specification for Fuel System Icing Inhibitors
D4176 Test Method for Free Water and Particulate Contami-
nation in Distillate Fuels (Visual Inspection Procedures)
D4294 Test Method for Sulfur in Petroleum and Petroleum
Products by Energy Dispersive X-ray Fluorescence Spectrometry
D4306 Practice for Aviation Fuel Sample Containers for
Tests Affected by Trace Contamination
D4529 Test Method for Estimation of Net Heat of Combustion
of Aviation Fuels

* A Summary of Changes section appears at the end of this standard

1 This specification is under the jurisdiction of ASTM Committee D02 on
Petroleum Products and Lubricants and is the direct responsibility of Subcommittee
D02.10.01 on Jet Fuel Specifications.

approved in 2000. Last previous edition approved in 2011 as D6615–11. DOI:
10.1520/D6615-11A.

²For referenced ASTM standards, visit the ASTM website, www.astm.org, or
contact ASTM Customer Service at service@astm.org. For Annual Book of ASTM
Standards volume information, refer to the standard’s Document Summary page on
the ASTM website.

³The last approved version of this historical standard is referenced on
www.astm.org.
D4809 Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method)
D4865 Guide for Generation and Dissipation of Static Electricity in Petroleum Fuel Systems
D4952 Test Method for Qualitative Analysis for Active Sulfur Species in Fuels and Solvents (Doctor Test)
D5001 Test Method for Measurement of Lubricity of Aviation Turbine Fuels by the Ball-on-Cylinder Lubricity Evaluator (BOCLE)
D5006 Test Method for Measurement of Fuel System Icing Inhibitors (Ether Type) in Aviation Fuels
D5191 Test Method for Vapor Pressure of Petroleum Products (Mini Method)
D5452 Test Method for Particulate Contamination in Aviation Fuels by Laboratory Filtration
D5453 Test Method for Determination of Total Sulfur in Light Hydrocarbons, Spark Ignition Engine Fuel, Diesel Engine Fuel, and Engine Oil by Ultraviolet Fluorescence
D5972 Test Method for Freezing Point of Aviation Fuels (Automatic Phase Transition Method)
D6379 Test Method for Determination of Aromatic Hydrocarbon Types in Aviation Fuels and Petroleum Distillates—High Performance Liquid Chromatography Method with Refractive Index Detection
E29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
2.2 IP Standards:
225 Copper Content of Aviation Turbine Fuel
227 Silver Corrosion of Aviation Turbine Fuel
2.3 Other Standard:
CAN/CGSB 3.22-97 “Aviation Turbine Fuel, Wide Cut Type” includes grade Jet B and NATO grade F-40 fuel
2.4 Military Standard:

3. General

3.1 This specification, unless otherwise provided, prescribes the required properties of Jet B wide-cut aviation turbine fuel at the time and place of delivery.

4. Classification

4.1 One type of aviation turbine fuel is provided, as follows:
4.1.1 Jet B—A relatively wide boiling range volatile distillate.

5. Materials and Manufacture

5.1 Aviation turbine fuel, except as otherwise specified in this specification, shall consist of blends of refined hydrocarbons (see Note 2) derived from conventional sources, including crude oil, natural gas liquid condensates, heavy oil, shale oil, and oil sands. The use of jet fuel blends, containing components from other sources, is permitted only on a specific individual basis.

5.2 Additives—May be added to each type of aviation turbine fuel in the amount and of the composition specified in the following list of approved material:
5.2.1 Antioxidants—In amounts not to exceed 24.0 mg/L active ingredients (not including weight of solvent):
5.2.1.1 2,6-ditertiary-butyl phenol.
5.2.1.2 2,6-ditertiary-butyl-4-methyl phenol.
5.2.1.3 2,4-dimethyl-6-tertiary-butyl phenol.
5.2.1.4 75 % minimum 2,6-ditertiary-butyl phenol, plus 25 % maximum mixed tertiary and tritertiary-butyl phenols.
5.2.1.5 55 % minimum 2,4-dimethyl-6-tertiary-butyl phenol, plus 15 % minimum 2,6-ditertiary-butyl-4-methyl phenol, remainder as monomethyl and dimethyl tertiary-butyl phenols.
5.2.1.6 72 % minimum 2,4-dimethyl-6-tertiary-butyl phenol, 28 % maximum monomethyl and dimethyl-tertiary-butyl phenols.
5.2.2 Metal Deactivator, in amount not to exceed 5.7 mg/L (not including weight of solvent):
5.2.2.1 N,N-disaliclyldiene-1,2-propane diamine.
5.2.3 Electrical Conductivity Additive—Stadis 4508 not to exceed 3 mg/L.
5.2.3.1 When loss of fuel conductivity necessitates retreatment with electrical conductivity additive, the following concentration limits apply:

<table>
<thead>
<tr>
<th>Additive</th>
<th>Concentration Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stadis 450</td>
<td>3 mg/L, max</td>
</tr>
<tr>
<td>Cumulative</td>
<td>5 mg/L, max</td>
</tr>
</tbody>
</table>

5.2.4 Leak Detection Additive—Tracer A9 may be added to the fuel in amounts not to exceed 1 mg/kg.
5.2.5 Other additives are permitted under 5.1 and Section 7. These include fuel system icing inhibitor, other anti-oxidants, inhibitors, and special purpose additives. The quantities and types must be declared by the fuel supplier and agreed to by the purchaser. Only additives approved by the aircraft certifying authority are permitted in the fuel on which an aircraft is operated.

7 Supporting data (guidelines for approval or disapproval of additives) have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02-1125.
8 Stadis 450 is a registered trademark marketed by Innospec Inc., Innospec Manufacturing Park, Oil Sites Road, Elsmere Port, Cheshire, CH65 4EY, UK.
9 Tracer A (LDTA-A) is a registered trademark of Tracer Research Corp., 3755 N. Business Center Dr., Tucson, AZ 85705.
5.2.5.1 Biocidal additives are available for controlled usage. Where such an additive is used in the fuel, the approval status of the additive and associated conditions must be checked for the specific aircraft and engines to be operated.

5.2.5.2 Fuel System Icing Inhibitor:

(1) Diethylene Glycol Monomethyl Ether (DIEGME), conforming to the requirements of Specification D4171, Type III, may be used in concentrations of 0.10 to 0.15 volume %.

(2) Test Method D5006 may be used to determine the concentration of DIEGME in aviation fuels.

5.3 Guidance material is presented in Appendix X3 concerning the need to control processing additives in jet fuel production.

6. Detailed Requirements

6.1 The aviation turbine fuel shall conform to the requirements prescribed in Table 1.

Table 1: Detailed Requirements of Aviation Turbine Fuels

<table>
<thead>
<tr>
<th>Property</th>
<th>Jet B</th>
<th>ASTM Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Aromatics, vol %</td>
<td>max</td>
<td>25</td>
</tr>
<tr>
<td>2. Aromatics, vol %</td>
<td>max</td>
<td>26.5</td>
</tr>
<tr>
<td>Sulfur, mercapta, %</td>
<td>max</td>
<td>0.003</td>
</tr>
<tr>
<td>Sulfur, total mass %</td>
<td>max</td>
<td>0.30</td>
</tr>
<tr>
<td>Distillation temperature, °C:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 % recovered, temperature</td>
<td>min</td>
<td>90</td>
</tr>
<tr>
<td>20 % recovered, temperature</td>
<td>max</td>
<td>145</td>
</tr>
<tr>
<td>50 % recovered, temperature</td>
<td>min</td>
<td>110</td>
</tr>
<tr>
<td>50 % recovered, temperature</td>
<td>max</td>
<td>190</td>
</tr>
<tr>
<td>90 % recovered, temperature</td>
<td>max</td>
<td>245</td>
</tr>
<tr>
<td>Distillation residue, %</td>
<td>max</td>
<td>1.5</td>
</tr>
<tr>
<td>Distillation loss, %</td>
<td>max</td>
<td>1.5</td>
</tr>
<tr>
<td>Density at 15°C, kg/m³</td>
<td></td>
<td>751 to 802</td>
</tr>
<tr>
<td>Vapor pressure, 38°C, kPa</td>
<td></td>
<td>14 to 21</td>
</tr>
<tr>
<td>Freezing point, °C</td>
<td></td>
<td>max</td>
</tr>
<tr>
<td>Net heat of combustion, MJ/kg</td>
<td></td>
<td>min</td>
</tr>
<tr>
<td>One of the following requirements shall be met:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Smoke point, mm, or</td>
<td>min</td>
<td>25</td>
</tr>
<tr>
<td>(2) Smoke point, mm, and</td>
<td>min</td>
<td>18</td>
</tr>
<tr>
<td>Naphthalenes, vol, %</td>
<td>max</td>
<td>3.0</td>
</tr>
<tr>
<td>Copper strip, 2 h at 100°C</td>
<td></td>
<td>No. 1</td>
</tr>
<tr>
<td>Thermal Stability:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.5 h at control temperature of 260°C min):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filter pressure drop, mm Hg</td>
<td>max</td>
<td>25</td>
</tr>
<tr>
<td>Tube deposits less than</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>No Peacock or Abnormal Color Deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Existent gum, mg/100 mL</td>
<td>max</td>
<td></td>
</tr>
<tr>
<td>ADDITIVES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electrical conductivity, pS/m</td>
<td>See 5.2</td>
<td></td>
</tr>
<tr>
<td>Microseparometer Rating</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without electrical conductivity additive</td>
<td>min</td>
<td>85</td>
</tr>
<tr>
<td>With electrical conductivity additive</td>
<td>min</td>
<td>70</td>
</tr>
</tbody>
</table>

For compliance of test results against the requirements of Table 1, see 6.2.

The test methods indicated in this table are referred to in Section 10.

The mercaptan sulfur determination may be waived if the fuel is considered sweet by the doctor test described in Test Method D4952.

Cyclohexane and toluene, as cited in 7.2 and 7.7 of Test Method D5191, shall be used as calibrating reagents. Test Method D5191 shall be the referee method.

Other freezing points may be agreed upon between supplier and purchaser.

Test Method D3972 may produce a higher (warmer) result than that from Test Method D2386 on wide-cut fuels such as Jet B or JP-4. In case of dispute, Test Method D2386 shall be the referee method.

Use either Eq 1 or Table 1 in Test Method D4529 or Eq 2 in Test Method D3338. Test Method D4809 may be used as an alternative. In case of dispute, Test Method D4809 shall be used.

Tube deposits shall always be reported by the Visual Method.

If electrical conductivity additive is used, the conductivity shall not exceed 600 pS/m at the point of use of the fuel. When electrical conductivity additive is specified by the purchaser, the conductivity shall be 50 to 600 pS/m under the conditions at point of delivery.

\[1 \text{ pS/m} = 1 \times 10^{-12} \Omega^{-1} m^{-1} \]

7. Workmanship, Finish, and Appearance

7.1 The aviation turbine fuel specified in this specification shall be visually free of undissolved water, sediment, and suspended matter. The odor of the fuel shall not be nauseating or irritating. No substance of known dangerous toxicity under usual conditions of handling and use shall be present, except as permitted in this specification.
8. Sampling

8.1 Because of the importance of proper sampling procedures in establishing fuel quality, use the appropriate procedures in Practice D4057 to obtain a representative sample from the batch of fuel for specification compliance testing. This requirement is met by producing fuel as a discrete batch, then testing it for specification compliance. This requirement is not satisfied by averaging online analysis results.

8.2 A number of jet fuel properties, including thermal stability, water separation, electrical conductivity, and others, are very sensitive to trace contamination, which can originate from sample containers. For recommended sample containers, refer to Practice D4306.

9. Report

9.1 The type and number of reports to ensure conformance with the requirements of this specification shall be mutually agreed upon by the seller and the purchaser of the aviation turbine fuel.

9.2 A suggested form for reporting inspection data on aviation turbine fuels is given in Appendix X4 of Specification D1655.

10. Test Methods

10.1 Determine the requirements enumerated in this specification in accordance with the following ASTM test methods.

10.1.1 Density—Test Methods D1298 or D4052.
10.1.2 Distillation—Test Method D86.
10.1.3 Vapor Pressure—Test Methods D323 or D5191. Test Method D5191 shall be the referee test method.
10.1.4 Freezing Point—Test Methods D2386 or D5972. Test Method D2386 shall be the referee test method.
10.1.5 Net Heat of Combustion—Test Methods D4529, D3338, or D4809.
10.1.6 Corrosion (Copper Strip)—Test Method D130.
10.1.7 Sulfur—Test Methods D1266, D2622, D4294, or D5453.
10.1.8 Mercaptan Sulfur—Test Method D3227.
10.1.9 Water Reaction—Test Method D1094.
10.1.10 Existent Gum—Test Method D381.
10.1.11 Thermal Stability—Test Method D3241.
10.1.12 Aromatics—Test Methods D1319 or D6379. Test Method D1319 shall be the referee test method.
10.1.13 Smoke Point—Test Method D1322.
10.1.14 Naphthalene Content—Test Method D1840.
10.1.15 Electrical Conductivity—Test Method D2624.

11. Keywords

11.1 aviation turbine fuel; avtag; Jet B; jet fuel; turbine fuel; wide-cut

APPENDIXES

(Nonmandatory Information)

XI. PERFORMANCE CHARACTERISTICS OF AVIATION TURBINE FUEL

X1.1 Introduction

X1.1.1 This appendix describes the performance characteristics of aviation turbine fuels. A more detailed discussion of the individual test methods and their significance is found in ASTM Manual No. 1.

X1.2 Significance and Use

X1.2.1 Specification D6615 defines one type of jet fuel for civil use. Limiting values for the two types of fuel covered are placed on fuel properties believed to be related to the performance of the aircraft and engines in which they are most commonly used.

X1.2.2 The safe and economical operation of aircraft requires fuel that is essentially clean and dry and free of any contamination prior to use. It is possible to measure a number of jet fuel characteristics related to quality.

X1.2.3 The significance of standard tests for fuel properties may be summarized for convenience in terms of the technical relationships with performance characteristics as shown in Table X1.1.

X1.2.4 The acceptability of additives for use must ultimately be determined by the engine and aircraft type certificate holder and must be approved by his certifying authority. In the United States of America, the certifying authority is the Federal Aviation Administration.

X1.3 Thermal Stability

X1.3.1 Stability to oxidation and polymerization at the operating temperatures encountered in certain jet aircraft is an important performance requirement. The thermal stability measurements are related to the amount of deposits formed in the engine fuel system on heating the fuel in a jet aircraft. Commercial jet fuels should be thermally stable at fuel temperature as high as 163°C (325°F). Such fuels have been demonstrated to have inherent storage stability.

X1.3.2 In 1973, Test Method D3241 replaced Method of Test D1660, known as the ASTM Coker for the determination of...
of oxidative thermal stability. (See CRC Report 450, dated 1969 and revised in 1972. See also Bert and Painter’s SAE paper 730385.11) Today, a single pass/fail run with the tube temperature controlled at 260°C is used to ensure compliance with the specifications minimum requirements. For a more complete characterization of a fuel’s thermal stability, a break- point can be obtained. The breakpoint is the highest tube temperature at which the fuel still passes the specification requirements of the tube deposit color and pressure differential. Normally, obtaining a breakpoint requires two or more runs at differing tube temperatures. Breakpoints are therefore not used for quality control, but they serve mostly for research purposes.

X1.4 Combustion

X1.4.1 Jet fuels are continuously burned in a combustion chamber by injection of liquid fuel into the rapidly flowing stream of hot air. The fuel is vaporized and burned at near stoichiometric conditions in a primary zone. The hot gases so produced are continuously diluted with excess air to lower their temperature to a safe operating level for the turbine. Fuel combustion characteristics relating to soot formation are emphasized by current specification test methods. Other fuel combustion characteristics not covered in current specifications are burning efficiency and flame-out.

X1.4.2 In general, paraffin hydrocarbons offer the most desirable combustion cleanliness characteristics for jet fuels. Naphthenes are the next most desirable hydrocarbons for this use. Although olefins generally have good combustion characteristics, their poor gum stability usually limits their use in aircraft turbine fuels to about 1% or less. Aromatics generally have the least desirable combustion characteristics for aircraft turbine fuel. In aircraft turbines, they tend to burn with a smoky flame and release a greater proportion of their chemical energy as undesirable thermal radiation than the other hydrocarbons. Naphthalenes or bicyclic aromatics produce more soot, smoke, and thermal radiation than monocyclic aromatics and are, therefore, the least desirable hydrocarbon class for aircraft jet fuel use. All of the following measurements are influenced by the hydrocarbon composition of the fuel and, therefore, pertain to combustion quality: luminometer number, smoke point, percent naphthalenes, and percent aromatics.12

X1.4.2.1 Smoke Point—This method provides an indication of the relative smoke-producing properties of jet fuels and is related to the hydrocarbon-type composition of such fuels. Generally, the more highly aromatic the jet fuel, the more smoky the flame. A high smoke point indicates a fuel of low smoke-producing tendency.

X1.4.2.2 Aromatics—The combustion of highly aromatic jet fuels generally results in smoke and carbon or soot deposition, and it is therefore desirable to limit the total aromatic content as well as the naphthenes in jet fuels.

X1.4.2.3 Percent Naphthalenes—This method covers measurement of the total concentration of naphthalene, acenaphthen, and alkylated derivatives of these hydrocarbons in jet fuels containing no more than 5% of such compounds and having boiling points below 600°F (316°C).

X1.5 Fuel Metering and Aircraft Range

X1.5.1 Density—Density is a property of a fluid and is of significance in metering flow and in mass-volume relationships for most commercial transactions. It is particularly useful in

12 Supporting data have been filed at ASTM International Headquarters and may be obtained by requesting Research Report RR:D02:1258. A task force studied the possible use of hydrogen content as an alternative to aromatics content and completed the report in 1989.
empirical assessments of heating value when used with other parameters, such as aniline point or distillation. A low density may indicate low heating value per unit volume.

X1.5.2 Net Heat of Combustion—The design of aircraft and engines is based on the convertibility of heat into mechanical energy. The net heat of combustion provides a knowledge of the amount of energy obtainable from a given fuel for the performance of useful work; in this instance, power. Aircraft design and operation are dependent upon the availability of a certain predetermined minimum amount of energy as heat. Consequently, a reduction in heat energy below this minimum is accompanied by an increase in fuel consumption with corresponding loss of range. Therefore, a minimum net heat of combustion requirement is incorporated in this specification. The determination of net heat of combustion is time consuming and difficult to conduct accurately. This led to the development and use of the aniline point and density relationship to estimate the heat of combustion of the fuel. This relationship is used along with the sulfur content of the fuel to obtain the net heat of combustion by Test Method D4529 for the purposes of this specification. An alternative calculation, Test Method D3338, is based on correlations of aromatics content, gravity, volatility, and sulfur content. This method may be preferred at refineries where all these values are normally obtained and the necessity to obtain the aniline point is avoided. The direct measurement method, Test Method D4809, is normally used only as a referee method in cases of dispute.

X1.6 Fuel Atomization

X1.6.1 Distillation—The fuel volatility and ease of vaporization at different temperatures are determined by distillation. The 90% limit excludes heavier fractions that would be difficult to vaporize.

X1.6.2 Vapor Pressure—The vapor pressure serves as a criterion of freedom from foaming, fuel slugging, and losses of light ends through aircraft tank vents at high altitude. This is of significance with respect to Jet B fuel because of its higher volatility in comparison to kerosine-type jet fuels.

X1.7 Fluidity at Low Temperatures

X1.7.1 Freezing Point—The freezing point is particularly important and must be sufficiently low to preclude interference with flow of fuel through filter screens to the engine at temperatures prevailing at high altitudes. The temperature of fuel in an aircraft tank decreases at a rate proportional to the duration of flight. The maximum freezing point allowed for the fuel is therefore related to the type of flight. For example, long duration flights would require fuel of lower freezing point than short duration flights.

X1.8 Compatibility with Elastomer and the Metals in the Fuel System and Turbine

X1.8.1 Mercaptan Sulfur—Mercaptans are known to be reactive with certain elastomers. A limitation in mercaptan content is specified to preclude such reactions and to minimize the unpleasant mercaptan odor.

X1.8.2 Sulfur—Control of sulfur content is significant for jet fuels because the sulfur oxides formed during combustion may be corrosive to turbine metal parts.

X1.8.3 Copper Strip Corrosion—A requirement that jet fuel must pass the copper strip test ensures that the fuel will not corrode copper or any copper-base alloys in various parts of the fuel system.

X1.9 Fuel Storage Stability

X1.9.1 Existent Gum—Gum is a nonvolatile residue left on evaporation of fuel. A steam jet is used as an evaporating agent for fuels that are to be used in aircraft equipped with turbine engines. The amount of gum present is an indication of the condition of the fuel at the time of test only. Large quantities of gum are indicative of contamination of fuel by higher boiling oils or particulate matter and generally reflect poor fuel handling practices.

X1.10 Fuel Cleanliness and Handling

X1.10.1 Water Reaction—The Test Method D1094 water reaction test method provides a means to determine the presence of materials that react with water and form an insoluble scum at the fuel/water interface in the test.

X1.10.2 Water Separation Characteristics—The ease of coalescence of water from fuels, as influenced by surface active agents (surfactants), is assessed by Test Method D3948. This test method is designed to be used as a field or laboratory method. A high rating suggests a fuel free of surfactants; a low rating indicates that surfactants are present. Surfactants, which may be contaminants or deliberately added materials, may gradually disarm filter coalescers, allowing fine water droplets and particulate contaminants to pass separators in ground handling equipment.

X1.10.3 Free Water and Particulate Contamination in Distillate Fuels (Clear and Bright Pass/Fail Procedures)—The procedures in Test Method D4176 provide rapid but nonquantitative methods for detecting contamination in a distillate fuel. The methods described in X1.10.4 and X1.10.6 permit quantitative determinations.

X1.10.4 Particulate Matter—The presence of adventitious solid particulate contaminants such as dirt and rust may be detected by filtration of the jet fuel through membrane filters under prescribed conditions. Suitable techniques are described in Test Methods D2276 and D5452.

X1.10.5 Membrane Color Ratings—Filtering the fuel through a membrane and rating the color of the deposits against a standard color scale offers a qualitative assessment of particulate contaminant levels in fuels or changes in fuel contaminant levels at a particular location. Appendix XI of Test Method D2276 describes a suitable technique.

X1.10.6 Undissolved Water—The test method for undissolved water provides a quantitative means for measuring the amount of undissolved or free water in flowing fuel streams without exposing the sample to the atmosphere or to a sample container. It also provides a means for checking the performance of fuel filter-separators. Test Method D3240 describes this test method.
X1.10.7 Static Electricity—The generation and dissipation of static electricity can create problems in the handling of aviation fuels. Electrical conductivity additives can be added to dissipate charge more rapidly. This is most effective when the fuel conductivity is in the range from 50 to 450 pS/m. Studies have shown that when fuels treated with conductivity additive are commingled with non-additized fuel resulting in a low conductivity fuel, that fuel blend does not exhibit unusual static behavior. For more information on this subject, see Guide D4865.

X1.11 Fuel Lubricity

X1.11.1 Aircraft/engine fuel system components and fuel control units rely on the fuel to lubricate their moving parts. The effectiveness of a jet fuel as a lubricant in such equipment is referred to as its lubricity. Differences in fuel system component design and materials result in varying degrees of equipment sensitivity to fuel lubricity. Similarly, jet fuels vary in their level of lubricity. In-service problems experienced have ranged in severity from reductions in pump flow to unexpected mechanical failure leading to in-flight engine shutdown.

X1.11.2 The chemical and physical properties of jet fuel cause it to be a relatively poor lubricating material under high temperature and high load conditions. Severe hydroprocessing removes trace components resulting in fuels that tend to have lower lubricity than straight-run or wet-treated fuels. Certain additives, for example, corrosion inhibitors, can improve the lubricity and are widely used in military fuels. They have been used occasionally in civil jet fuel to overcome aircraft problems but only as a temporary remedy while improvements to the fuel system components or changes to fuel were achieved. Because of their polar nature, these additives can have adverse effects on ground base filtration systems and on fuel water separation characteristics.

X1.11.3 Some modern aircraft fuel system components have been designed to operate on low lubricity fuel. Other aircraft may have fuel system components that are sensitive to fuel lubricity. In these cases, the manufacturer may advise precautionary measures, such as the use of an approved lubricity additive to enhance the lubricity of a particular fuel. Problems are more likely to occur when aircraft operations are confined to a single refinery source where fuel is severely hydroprocessed and where there is no commingling with fuels from other sources during distribution between refinery and aircraft.

X1.11.4 Test Method D5001 (BOCLE) is a test for assessing fuel lubricity and is used for in-service trouble shooting, lubricity additive evaluation, and in the monitoring of low lubricity test fluid during endurance testing of equipment. However, because the BOCLE may not accurately model all types of wear that cause in-service problems, other methods may be developed to better simulate the type of wear most commonly found in the field.

X1.12 Miscellaneous

X1.12.1 Additives—Antioxidants and metal deactivators are used to prevent the formation of oxidation deposits in aircraft engine fuel systems, to counteract the catalytic effects of active metals in fuel systems, and to improve the oxidation stability of fuels in storage. Other additives are available to inhibit the corrosion of steel in fuel systems, to improve the fuel lubricity, to increase the electrical conductivity of fuel, to combat microbiological organisms, to prevent the formation of ice in fuel systems containing water, and to assist in detecting leaks in fuel storage, delivery, and dispensing systems. The chemical names of approved additives and the maximum quantities permitted are shown in the specifications.

X1.12.1.1 Fuel System Icing Inhibitor, diethylene glycol monomethyl ether approved in 5.2.5.2 shall conform to the requirements shown in Specification D4171.

X1.12.2 Sample Containers—A practice for sampling aviation fuel for tests affected by trace contamination can be found in Practice D4306.

X1.12.3 Leak Detection Additive—Addition of leak detection additive, approved in 5.2.4, should be added to the fuel in accordance with the Tracer Tight technology.

X1.12.4 Color—While this specification does not have a color requirement, color can be a useful indicator of fuel quality. Normally, fuel color ranges from water white (colorless) to a straw/pale yellow. Other fuel colors may be the result of crude oil characteristics or refining processes. Darkening of fuel or a change in fuel color may be the result of product contamination and may be an indicator that the fuel is off-specification, which could render it unfit and not acceptable for aircraft/engine use. Fuel having various shades of color, that is, pink, red, green, blue, or a change in color from the supply source should be investigated to determine the cause of color change to ensure suitability for aircraft/engine use and should be documented prior to final delivery to airport storage.

13 Tracer Tight is a registered trademark of Tracer Research Corp., 3755 N. Business Center Dr., Tucson, AZ 85705.
X2. CLEANLINESS GUIDELINES

X2.1 Introduction

X2.1.1 The cleanliness of aviation turbine fuel is an essential performance requirement. Cleanliness requires the relative absence of free water and solid particulates. Water, or dirt, or both, contamination in fuel on-board an aircraft represents a threat to flight safety and can cause longer term problems in areas such as wear, corrosion, and plugging of filters and other narrow tolerance parts.

X2.1.2 The cleanliness of aviation turbine fuel is protected in part by allowing time for dirt and water to settle during fuel distribution and by the routine use of effective filtration that removes both dirt and water. Generally the fuel handling system filters the fuel several times between manufacture and use with the final filtration occurring as the fuel is loaded onto an aircraft.

X2.1.3 A key element in preventing contamination is to minimize or eliminate surfactants, which can compromise the ability of fuel handling systems to remove dirt and water. For example, surfactants can reduce the particle size of suspended solid and water droplets, which slows removal by settling. Surfactants can disperse dirt and water so finely that they pass through filters. Surfactants can adsorb on the surfaces of filter/coalescers interfering with water removal. Surfactants can also lift rust from surfaces increasing the solids level in the fuel.

X2.1.4 Unlike most other fuel properties, fuel cleanliness is dynamic; constantly changing during transportation and distribution. Jet fuel should be maintained in as clean a condition as possible right up to and in airport storage to ensure that possible failures of individual filtration components will not result in an unsafe condition. Airport control of cleanliness should be such as to ensure that only fuel relatively absent of free water and solid particulates is delivered into aircraft.

X2.2 Surfactant Cleanliness

X2.2.1 The presence of surfactants in aviation turbine fuel specified by Specification D1655 is controlled at the point of manufacture by the Test Method D3948 performance requirement listed in Table 1. To determine if surfactant contamination occurs during transportation, the fuel should also be tested downstream of the point of manufacture as appropriate.

X2.2.2 Results of downstream Test Method D3948 testing are not to be used as the sole reason for rejection of fuel, but they can indicate a mandatory need for further diligent investigation or remedial action, or both, such as passing the fuel through a clay adsorption unit to remove surfactants. However, the fuel may be rejected in the absence of satisfactory Test Method D3948 testing results if no documented evidence is presented that a detailed investigation was carried out which demonstrated that the fuel was free of excess water and dirt and can be delivered into aircraft in a clean condition.

X2.2.3 Because distribution systems can be complex and employ a variety of methods of transporting the fuel, sampling points and methodologies should be established as a result of a technical assessment designed to ensure that fuel cleanliness is maintained throughout the system to the point of delivery into aircraft. Since transport systems vary in their basic nature, for example, a multi-product pipeline versus a dedicated pipeline, and also in their detailed operating conditions, the parties assuming custody of the fuel should evaluate their particular systems and establish suitable testing requirements.

X2.3 Cleanliness at Time of Fuel Custody Transfer at the Airport

X2.3.1 Airport fueling is the most critical location for controlling dirt and water cleanliness. Into-airport storage is thus an important point for controlling surfactant contamination so as to protect out-of-storage and into-plane dirt and water filtration.

X3. CONTROL OF PROCESSING ADDITIVES

X3.1 Experience has shown that refinery processing additives, such as corrosion inhibitors, might be carried over in trace quantities into aviation fuel during refinery production. In some cases, this has resulted in operational problems in aircraft fuel systems. Moreover, these additives can cause problems at levels that may not be detected by the standard specification testing detailed in Table 1. While the specification (in 5.1.1) requires that only approved additives are used, confirming that non-approved additives are absent is difficult, given that:

X3.1.1 The analytical target may be uncertain, since there is a wide range of (often proprietary) materials involved,

X3.1.2 There is no industry-agreed upon basis for determining the required analysis sensitivity, and

X3.1.3 There usually are no available data, relating processing additive concentration to aircraft system performance, to set no-harm levels (to define analysis sensitivity).

X3.2 It is therefore not practical for this specification to require detailed chemical analysis of each production batch of aviation fuel beyond the requirements listed in Table 1. Instead, each manufacturing location should ensure that procedures are in place to control processing additive use and impact on product performance. One acceptable approach to do this is to implement a management of change procedure that evaluates the impact of processing changes (including process additives) on finished product quality. Other approaches may also be acceptable.
X4. FORM FOR REPORTING INSPECTION DATA ON AVIATION TURBINE FUELS

X4.1 See Specification D1655 for guidance on the form for reporting inspection data.

SUMMARY OF CHANGES

Subcommittee D02.J0 has identified the location of selected changes to this standard since the last issue (D6615–11) that may impact the use of this standard. (Approved Oct. 1, 2011.)

(1) Modified X1.3.1 and X1.3.2.

Subcommittee D02.J0 has identified the location of selected changes to this standard since the last issue (D6615–10) that may impact the use of this standard. (Approved July 15, 2011.)

(1) Removed original Footnote I from Table 1.

Subcommittee D02.J0 has identified the location of selected changes to this standard since the last issue (D6615–06) that may impact the use of this standard. (Approved May 1, 2010.)

(1) Revised 5.1. (2) Added Note 2.
(3) Removed Test Method D4305 and D5901 from the Referenced Documents, Table 1, and 10.1.4. (4) Modified Table 1 and footnotes.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org). Permission rights to photocopy the standard may also be secured from the ASTM website (www.astm.org/COPYRIGHT/).